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Abstract

Contact problems play a dominate role in almost all engineering disciplines, thus
there is a huge demand for computational contact mechanics. One of the most im-
pressive application is crash analysis. In the scope of this master’s thesis contact
mechanics is approached in an object-oriented manner. A three-dimensional non-
linear node-to-surface contact algorithm is derived and implementation details
are presented. For constraint enforcement the penalty method is used.

The thesis is composed of six chapters. The first two chapters give an intro-
duction to the topic and describe computational contact mechanics in the frame-
work of object orientation. Next, the basic theory is presented. The implemented
4-node contact element is formulated in the fourth chapter. After the contact
element is derived the object-oriented implementation is explained. Finally, ex-
amples are presented and discussed.

Keywords: computational contact mechanics, object-oriented, node-to-surface,
penalty method, surface-coupled, three-dimensional, frictionless
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Chapter 1

Introduction and motivation

This master’s thesis deals with computational contact mechanics as a subclass of
surface-coupled problems. Contact problems arise almost everywhere in nature
and they are crucial in engineering. No car could drive without frictional contact
and even walking would be impossible without friction. Mechanical contact prob-
lems are also key problems in safety analysis e.g. in car crashworthiness, where
the crash analysis is a highly complicated contact problem (see figure 1.1). Con-
tact is also dominate in medicine e.g. placing a stent inside an artery. Consumer
goods packaging maybe is not an obvious application of contact mechanics, but
the packaging must survive drop tests. Simulations are performed in advance to
optimize the packaging, so the key feature of these simulations is a robust contact
algorithm. One problem is therefore to design and derive efficient, accurate and
robust contact algorithms, which can be used in the framework of continuum me-

Figure 1.1: BMW 5 series front crash half model

1



Chapter 1. Introduction and motivation

chanical simulations. In the scope of this thesis a three-dimensional, nonlinear
contact algorithm is derived. For constraint enforcement the penalty method is
used, the contact interface was discretized by a node-to-surface formulation. The
contact problems are solved within the framework of a nonlinear static analysis.

1.1 Aim of the master’s thesis

The main aim of the presented work is to approach computational contact me-
chanics in an object-oriented manner. Contact mechanics can, as a subclass of
surface-coupled problems, be decomposed into components. The identification
of these components is the key to object-oriented programming.

Within this master’s thesis a three-dimensional node-to-surface frictionless
contact algorithm is formulated and implemented in order to demonstrate the
object-oriented concept.

1.2 Overview

In this chapter only a short introduction to the topic and the motivation for com-
putational contact mechanics are given. The following chapter addresses the is-
sue of how a computational contact algorithm can be decomposed in an object-
oriented manner and identifies components of computational contact algorithms.
The third chapter presents the basic theory. An introduction to linear and nonlin-
ear FEM is provided. Furthermore some simple one-dimensional mechanical con-
tact examples are presented. As the examples in chapter 3 are one-dimensional,
chapter 4 expands the presented concepts to three dimensions and a 4-node con-
tact element is derived. For the constraint enforcement the penalty method is
used exclusively. The whole object-oriented contact algorithm is discussed in de-
tail in chapter 5. Finally, examples are presented and discussed in chapter 6.
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Chapter 2

Surface-coupled problems and
object-orientation

The whole contact algorithm is designed in an object-oriented manner, so an
object-oriented programming language is needed for the implementation. As
a “middle-level” language C++ provides a good compromise of efficiency and
high-level features like object-oriented programming and data abstraction. Fur-
thermore C++ is widely used and has good support for parallel programming. It
is therefore a good choice for FE software.

The design philosophy for computational contact mechanics is such that it
can easily be expanded to different contact formulations and enforcement meth-
ods. As mechanical contact is a subclass of surface-coupled problems, parts of
the implementation can be reused for different other surface-coupled problems
like fluid-structure interaction (FSI) or thermal fluid-structure interaction (TFSI).

Contact mechanics is a nonlinearity in the boundary conditions, thus it is a
surface-coupled problem. The computational power of an average PC is around 5
GFlops at the moment. The tremendous increase in computational power during
the last years makes it possible to simulate multiphysical problems. Most of these
problems are coupled by means of surfaces. Because these problems share the
feature of quantity exchange over the surface, it is attempted to implement the
contact algorithm as general as possible in order to be able to expand it to other
surface-coupled problems later.

Siehe [3]

2.1 Fluid-structure interaction

Where fluid flow causes deformation of a structure, fluid-structure interaction oc-
curs. The resulting deformation is linked to the pressure load from the fluid flow.
The deformation of the structure in turn has an influence on the fluid flow. Ac-
cording to [40, chapter 18], fluid-structure interaction is a class I problem. This
class contains coupled problems in which coupling occurs on domain interfaces
via the boundary conditions imposed there. In general, different discretizations
can be used for the different domains. The domains may be physically different

3



Chapter 2. Surface-coupled problems and object-orientation

or similar. In the case of fluid-structure interaction it is possible to use finite vol-
ume methods for the fluid domain and finite elements for the structural domain.
The pressure and displacement fields are interchanged at the interface . In this
point fluid-structure interaction is similar to a frictionless contact problem. This
similarities can be exploited by object-oriented modeling.

2.2 Thermal fluid-structure interaction

Thermal fluid-structure interaction handles the heat transport in both domains
(structural and fluid) in addition to fluid-structure interaction. Therefore ther-
mal fluid-structure interaction is a class I and class II problem at the same time:
Class II coupled problems are problems in which the various domains overlap.
The coupling in class II occurs through the governing differential equations [40].
Both the structure and the fluid domain are coupled to the heat transfer by the
governing differential equations. In contrast to fluid-structure interaction there
are three fields to interchange at the interface.

2.3 Contact problems

The field of contact mechanics is a wide field. It is already quite challenging to
define the problem. Figure 2.1 on the next page shows an overview of a general
contact algorithm and gives insight into the possibilities of the contact problem
definition. We start with the determination of the contact pairing as a member of
the primary layer of the contact problem. The contact searching, which is done to
determine the contact pairs, can be divided into three main categories. The sim-
plest approach requires the user to specify the assumed contact partners. This
approach is used in this master’s thesis. The usual way is to specify a master and
a slave surface. From this information, a fairly simple contact search algorithm
can then determine the pairings. Of course there are even simpler approaches
like gap elements, but they are a poor representation of contact, because the pair-
ings can never change. For a car crash simulation even the surface-based contact
definition would be a tedious task, hence more sophisticated approaches have
been developed. One of them is “general contact”, for which the user just needs
to switch contact on. The pairings are then determined automatically by the algo-
rithm (see [30]). These techniques can also be used if self contact occurs.

A second crucial point in the problem definition addresses the issue of which
contact behaviors should exactly be modeled. In nature contact is never a “hard”
phenomena. Because of the roughness of the contact surfaces contact happens
in a smooth way: Unless the micro-structure of the contact surfaces is flat, con-
tact is only partially achieved (see also chapter 5). In order to be able to take
this into account, one way is to give the user the possibility to specify a force-
displacement curve. Another application for this “soft” contact is the simulation
of bodies coated with paint. Measurement data could be used in order to provide
realistic force-displacement curves, so there is no need to model the paint layer
with elements. These are some applications for the physical contact behavior in
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Figure 2.1: Components of computational contact

normal direction. For the tangential behavior there are even more: Different fric-
tion models can be used, some of them can even account for wear.

In the third and fourth component (see cyan blocks in figure 2.1) mathemat-
ics plays the dominate role. The simplest approach to discretize the contact is
the node-to-node approach. The drawback of the simple contact discretization
is that it works only with conforming meshes. The method used in this thesis is
the node-to-surface discretization, which can handle non-matching grids. More
advanced techniques are surface-to-surface discretizations (e.g. mortar method).
With each of the discretizations a combination with linear and nonlinear kinemat-
ics is possible.

The discretization methods are strongly linked to the constraint enforcement
methods. These deal with the question how to model the constraint in the func-
tional, which represents the structural problem. Most methods stem from the
optimization theory. Some of the most known are penalty, Lagrange multipliers
and augmented Lagrange techniques. Only the penalty method will be discussed
in this work. Penalty methods cannot enforce the constraint exactly, they always
allow slight penetrations of the contact partners. In theory it would be possible
to enforce the constraint exactly, even with penalty methods, but therefore an in-
finitely large penalty stiffness would be needed. If the penalty stiffness is too
large, the overall equation system becomes ill-conditioned. An estimate for an
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Chapter 2. Surface-coupled problems and object-orientation

optimal penalty stiffness is given in [20]. The advantages of penalty methods are
that they are not too complicated to implement and, in combination with good
solution strategies, they show quite good convergence.

In the following three chapters the implemented contact algorithm will be
derived from a theoretical point of view. We will start with the basics of linear
finite elements and then develop step by step the three-dimensional frictionless
node-to-surface contact algorithm with nonlinear kinematics. After the theory
has been presented the object-oriented implementation will be discussed.

2.4 Object-orientation for computational contact me-
chanics

With the help of the previous discussion it is now possible to decompose compu-
tational contact mechanics in an object-oriented manner. The first component is
the problem definition (see figure 2.1 on the previous page), which has four sub-
components. These four subcomponents (contact pair, contact behavior, contact
discretization and contact enforcement) build the basis for the class structure of
an object-oriented implementation of computational contact mechanics.

These four objects are accessible by the contact element class (see also fig-
ure 5.1 on page 34), which evaluates the gap function. These five objects can
be transformed into a class structure. It is not necessary to change the structure
of the underlying object-oriented finite element software (in this case Carat++).
If it is not possible to use the standard nonlinear solution scheme (e.g. Newton-
Raphson) in combination with the contact formulation, the structure of the finite
element software needs to be slightly adapted. In that case the solution methods
should be separated, so it is possible to interchange them according to the need
of the analysis type and the contact formulation.

6



Chapter 3

Concise theory

In this chapter some methods for solving computational contact problems are pre-
sented. For minimizing the unconstrained functional, the finite element method
is used. First it is introduced in a linear setting, later it is generalized to nonlinear
problems. Minimizing the unconstrained functional is equal to solving the oper-
ational form of continuum mechanics problems. After the finite element method
has been derived, an introduction on the nature of mechanical contact problems
is given. Furthermore, algorithms are discussed that can be used in combination
with the finite element method to solve mechanical contact problems.

3.1 The finite element method for solving PDEs

A famous numerical method for solving partial differential equations (PDEs) is
the so called finite element method. The term “finite element” was first used by
Clough [26]. In the following some insight in the method will be given by using
one of the simplest examples in mechanics, the linear elastic truss. Finite elements
are based on the weak form of a problem, which is equal to the strong form (proof
see [40]). Let us examine the finite element method with the help of an example.

3.1.1 Linear hanging truss

The truss has a constant cross sectional area A0 = 1 m2 and a length of L = 1 m.
The material is linear elastic with uniform density ρ = 1 kg/m3. The gravity body
load can be converted in a pseudo line load, which is given by n = A0ρa. By
the help of force balance and Taylor series one can derive the governing ordinary
differential equation for the normal force N(x) in the truss (see figure 3.1 on the
next page).

dN(x)
dx

= −n (3.1)

Note that this equation is derived under the geometric linear assumption.

7



Chapter 3. Concise theory

Figure 3.1: Hanging truss subjected to gravity

3.1.1.1 Strong form

With the material law for linear elastic material (σ = Eε = N(x)/A0) and the
kinematic relation (εeng = du(x)/dx) one can state the second order differential
equation for the hanging truss by

EA0
d2u(x)

dx2 = −n (3.2)

where u(x) is the displacement of the truss. The displacements are assumed to
be small. Note that equation (3.2) is called strong form or operator form. The
problem has the following boundary conditions:

u(0) = 0 (3.3)

σ(1) = 0→ du(x)
dx

∣∣∣∣
x=1

= 0 (3.4)

3.1.1.2 Weak form

Equation (3.2) can be written in the form

Ou + n = 0 (3.5)

where O := EA0d2(x)/dx2 is called operator. The weak form can be written with
the inner product (u, w) :=

∫ 1
0 u(x)w(x)dx as

(Ou, w) + (n, w) = 0 (3.6)

∫ 1

0
EA0

d2u(x)
dx2 w(x)dx = −

∫ 1

0
nw(x)dx (3.7)

with w(x) being the so-called weighting function. The weighting functions in
mechanics correspond to the virtual displacements δu. By applying integration

8



Chapter 3. Concise theory

by parts (note that in higher dimensions Green’s formula is needed) we gain the
weak form (equation (3.9)).

∫ 1

0
EA0

d2u(x)
dx2 w(x)dx = −EA0

∫ 1

0

du(x)
dx

dw(x)
dx

dx + EA0
��

��
�
��

��*0[
du(x)

dx
w(x)

]1

0
(3.8)

EA0

∫ 1

0

du(x)
dx

dw(x)
dx

dx =
∫ 1

0
nw(x)dx (3.9)

The term in equation (3.8) is zero because one requires w(0) = 0 and u′(1) = 0.
The latter is called natural boundary condition because it is fulfilled automati-
cally.

Heading towards a numerical solution we need to replace the infinite function
spaces for u(x) ∈ S and w(x) ∈W by a finite-dimensional approximation, which
are subspaces of the infinite function spaces.

3.1.1.3 Bubnov-Galerkin method

Now we discretize the weak form and arrive at the Galerkin form of the problem.
The Galerkin form is a special form of weighted residual methods. Furthermore
we restrict ourselves to the Bubnov-Galerkin method, which produces symmetric
stiffness matrices in combination with second-order differential equations. The
Galerkin method discretizes the weak form. The Galerkin form can be stated as

EA0

∫ 1

0

duh(x)
dx

dwh(x)
dx

dx =
∫ 1

0
nwh(x)dx (3.10)

where uh(x) ∈ Sh ⊂ S and wh(x) ∈ Wh ⊂ W are now elements of the finite
dimensioned function subspaces of S and W, respectively. In Bubnov-Galerkin
methods the trial space Sh and the test space Wh are spanned by the same basis
φ1(x), ..., φN(x). uh(x) is composed by uh(x) = ∑N

i=1 φi(x)ui, where ui are the
nodal values.

For the hanging truss example we choose a linear three element approxima-
tion. Linear means, that we choose local hat functions for each of the four nodes
(see figure 3.2 on the following page). The approximation for u(x) is a linear
function, which is C0-continuous at the nodes.

The Galerkin form for a representation with three linear element (two nodes
each) reads

EA0

N

∑
j=1

∫ 1

0

dφj(x)
dx

dφi(x)
dx

dx uj =
∫ 1

0
nφi(x)dx (3.11)

where i = 1, ..., 4. The domain integral can be splitted at each element border,
hence the Galerkin form is

9



Chapter 3. Concise theory

Figure 3.2: Linear approximation for the hanging truss

EA0

2

∑
j=1

∫ 1/3

0

dφj(x)
dx

dφi(x)
dx

dx uj

+ EA0

3

∑
j=2

∫ 2/3

1/3

dφj(x)
dx

dφk(x)
dx

dx uj

+ EA0

4

∑
j=3

∫ 1

2/3

dφj(x)
dx

dφl(x)
dx

dx uj

=
∫ 1/3

0
nφi(x)dx +

∫ 2/3

1/3
nφk(x)dx +

∫ 1

2/3
nφl(x)dx (3.12)

where i = 1, ..., 2 , k = 2, ..., 3 and l = 3, ..., 4. Equation (3.12) represents four
linear equations with four unknowns (uj), hence all the individual integrals can
be written in a matrix (element matrix) and in a vector (element load vector),
respectively. In the finite element method the integration is done numerically
(e.g. Gauss integration), but in this example we stick to analytical integration.

The element stiffness matrix is computed as follows by assuming that E =
1 N/m2 and a = 1 m/s2. (Note that all the three element stiffness matrices and
element load vectors are the same, therefore only one candidate is stated (with
φ1(x) = 1− 3x and φ2(x) = 3x)).

Ke1 = Ke2 = Ke3 = EA0

∫ 1/3

0

dφj(x)
dx

dφi(x)
dx

dx =

[
3 −3
−3 3

]
(3.13)

Note that these stiffness matrices could also be derived by a linearization of equa-
tion (3.12) around u. As equation (3.12) is linear in u, the derivative ∂/∂u of equa-
tion (3.12) does not depend on u anymore.

fe1 = fe2 = fe3 =
∫ 1/3

0
nφi(x)dx =

[
1
6
1
6

]
(3.14)
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Chapter 3. Concise theory

The assembled system for three connected elements representing the hanging
truss is given by

Ku = f (3.15)


3 −3 0 0
−3 6 −3 0

0 −3 6 −3
0 0 −3 3




u1

u2

u3

u4

 =


1
6
1
3
1
3
1
6

 (3.16)

The system is not solvable yet, because of the missing boundary condition at the
top of the truss u(0) = 0, which means that u1 = 0. This renders the sparse linear
system to:

 6 −3 0
−3 6 −3

0 −3 3


u2

u3

u4

 =


1
3
1
3
1
6

 (3.17)

In figure 3.3 the analytical solution is compared with the linear finite element
solution. The FEM solution matches the analytical one exactly at the nodes, but
this is unfortunately not the case in general.

0
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Figure 3.3: Numerical and analytical solution to the hanging linear truss
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Chapter 3. Concise theory

3.1.1.4 Variational form (functional)

First we should recall the introduced notation in equation (3.5) on page 8. The
quadratic functional can now be written by:

Π(w) =
1
2
(Ow, w) + (n, w)

= EA0

∫ 1

0
−
(

dw(x)
dx

)2

dx + EA0

�
��

��
��

��*
0[

dw(x)
dx

w(x)
]1

0
+
∫ 1

0
nw(x)dx

(3.18)

This is the functional to be minimized. We assume that u(x) is the function which
renders equation (3.18) to a minimum. If u(x) is a stationary point of the func-
tional, the following must hold [8, 9, 25]:

Π(u) ≤ Π(u + ιw) = Π(u) + ι [(Ou, w) + (w, n)] +
1
2

ι2(Ow, w) (3.19)

This can be derived under the assumption that O is linear, u(x) and w(x) are
real and ι is also real. Since equation (3.19) holds for ι on both sides of zero , the
linear term (first variation in the following denoted by δ) must vanish. This is
equivalent to:

(Ou, w) + (w, n) = 0 (3.20)∫ 1

0
EA0

du(x)
dx

dw(x)
dx

dx−
∫ 1

0
nw(x)dx = 0 (3.21)∫ 1

0
EA0

du(x)
dx

dw(x)
dx

− nw(x)dx = 0 (3.22)

By comparison of equation (3.22) and equation (3.9) on page 9 the weak form is
identified again (weak extremum).

If integration by parts is again applied on equation (3.22), and the boundary
terms are canceled, one arrives at:

−
∫ 1

0
EA0

d2u(x)
dx2 − nw(x)dx = 0 (3.23)∫ 1

0
EA0

d2u(x)
dx2 + nw(x)dx = 0 (3.24)

This is true if the integrand is zero, which gives the initial strong form of the
problem, also know as Euler’s equation:

EA0
d2u(x)

dx2 = −n (3.25)

12



Chapter 3. Concise theory

This now completes the circle. In the following we will focus on constrained
extrema of functionals in contrary to the unconstrained ones from this section.
Note that it can be shown that for any quadratic functional a corresponding Eu-
ler equation (strong form) can be established, but the converse is unfortunately
not true, because only certain forms of differential equations can be identified as
Euler equations of quadratic functionals [38].

3.1.2 Geometrically nonlinear hanging truss

In the following section the hanging truss problem is modified a little bit. Just one
element is used to represent the hanging truss (see figure 3.4). The linear solution
to the modified problem is also u2 = 0.5 m. The force vector is now a scalar and
reads f = 0.5 N, but as we see later, we need to reduce it to a corresponding
gravity load of a = 0.5 m/s2, which leads to the the force vector f = 0.25 N. As
an engineering strain εeng of 0.5 violates the small strain assumption, we need to
extend the hanging truss example to finite deformations (finite strain).

Figure 3.4: Hanging truss subjected to gravity (nonlinear formulation)

3.1.2.1 Nonlinear strain measures

There are many strain measures for nonlinear problems [7, 13, 17, 21, 33]. Here
just two of them will be discussed.

εGL =
1
2

l2 − L2

L2 (3.26)

εln = ln(λ) = ln
(

l
L

)
= ln (1 + εeng) (3.27)

The strain measure εGL is called Green-Lagrange strain, εln is called Hencky
strain or logarithmic strain. Both strain measures are well suited for large rotation
problems, as both produce zero strain for large rigid body motions (rotations/dis-
placements) in higher dimensions. But only the Hencky strain gives reasonable
results for large strain problems, as will be shown by an example. As we still stick

13



Chapter 3. Concise theory

to a linear elastic material law, we do not need to bother about work conjugated
strain-stress measures, so we can simply replace the stress by the multiplication
of the Young’s modulus with the strain.

Figure 3.5: Reference and deformed configuration

3.1.2.2 Nonlinear functional

In this section we use engineering notation rather than the previously used math-
ematical notation. This is done in order to keep the equations short. It is obvious
that δui is not the test function. By comparing with equation (3.10) on page 9
and equation (3.11) on page 9, it is easy to show that this is not the test function
w(x). It is rather a scalar, which is multiplied by the basis for the trial space
wh(x) = ∑N

i=1 φi(x)δui. As δui is arbitrary, it is not stated in equation (3.11) on
page 9. Note also that the superscript h is dropped in the following to simplify
the notation.

We start with the quadratic energy functional for the hanging truss which
reads:

Π =
1
2

∫
V

[
Eε2 + u(x)n

]
dV (3.28)

the weak form of equation (3.28) reads:

δΠ =
∫

V
[Eε(u(x))δε(u(x)) + δu(x)n]dV = 0 (3.29)

In the following we exploit the fact, that u1 = 0 m (because of the boundary
condition), thus we can interpolate u by:

u(x) =
N

∑
i=2

φi(x)ui = (1− x)u2 (3.30)

With this linear interpolation the functional can be written for the Hencky strain
measure as

Π =
1
2

EA0

∫
L

[(
εln
)2

+ (1− x)u2n
]

dL (3.31)

14



Chapter 3. Concise theory

The weak form of equation (3.29) on the previous page now reads:

δΠ = EA0

∫
L

[
εlnδεln

]
dL− 1

4
δu2 = 0 (3.32)

In order to be able to solve for u2, we need εln and δεln depending on u2

εln = ln
(

l
L

)
= ln

(
x2 − x1

X2 − X1

)
= ln

(
x2 − 0
1− 0

)
= ln (X2 + u2) = ln (1 + u2)

(3.33)

Alternatively one can derive equation (3.33) by:

εln = ln (1 + εeng) = ln
(

1 +
du(x)

dx

)
= ln (1 + u2) (3.34)

For the variation δεln one has

δεln =

(
1

1 + u2

)
δu2 (3.35)

Thus we can discretize the weak form (equation (3.29) on the previous page). The
Galerkin form of the problem reads now:

δΠ = EA0

(
1

1 + u2
ln (1 + u2)

)
︸ ︷︷ ︸

p→p internal forces

δu2 − 0.25︸︷︷︸
f→ f external forces

δu2 = 0 (3.36)

This is not longer linear in u2, hence one cannot separate the displacements and
solve a linear equation: An iterative solution method is needed to solve the non-
linear equation. Most often the Newton-Raphson algorithm is applied, which
has quadratic convergence within the convergence radius. The Newton’s method
(see 3.1.2.3) needs the first derivative of the nonlinear equation (system). This is
called tangent stiffness matrix and abbreviated by KT. Note that in the linear case
the stiffness matrix coincides with the tangent stiffness matrix and the problem is
solved with one “iteration” (linear equation system).

KT → KT =
∂p
∂u2

=
1

(1 + u2)2 −
ln(1 + u2)

(1 + u2)2 (3.37)

We also need the residual of the weak form of the problem (equation (3.36)) for the
Newton-Raphson algorithm, which is defined by the difference between internal
and external forces, hence by:

r→ r = p− f =
1

1 + u2
ln (1 + u2)− 0.25 (3.38)
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Chapter 3. Concise theory

It is now possible to define the equilibrium path, which is a function of u2. This
reads for equation (3.36) on the previous page:

f =
1

1 + u2
ln (1 + u2) (3.39)

Applying the same procedure from above for the Green-Lagrange strain measure,
one can also arrive at the equilibrium path for the Green-Lagrange strain:

f = (1 + u2)

(
u2 +

1
2

u2
2

)
(3.40)

If we plot the equilibrium paths for the Hencky strain (figure 3.6) and for the
Green-Lagrange strain (figure 3.7 on the next page) and compare them (figure 3.8
on the following page), one can directly see that for the Hencky strain and an
external load of f = 0.5 N there is no solution within R. Therefore, the example
was modified to an external load of f = 0.25 N.

It can also be derived, that the Green-Lagrange strain in combination with this
simple material model does not coincide with physics for large strains. Because
of the assumption that the volume is constant, the stiffness of the bar should
decrease during the deformation process. But the Green-Lagrange strain gives
a smaller value than the linear solution uGL

2 = 0.1914 m < ulinear
2 = 0.2500 m.

The Hencky strain on the other side coincides with physical expectations uln
2 =

0.4296 m > ulinear
2 = 0.2500 m
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Figure 3.6: Equilibrium path for the hanging truss with Hencky strain measure

3.1.2.3 Newton-Raphson algorithm

In order to solve the nonlinear equation (3.36) on the previous page, an iterative
technique is applied. The so-called Newton-Raphson algorithm (see algorithm
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Figure 3.7: Equilibrium path for the hanging truss with Green-Lagrange strain measure
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Figure 3.8: Equilibrium path for the hanging truss (closeup)

1) has the nice property of a quadratic convergence rate, if the distance between
starting value u(0)

2 and the solution u2 is sufficiently small (see [24, page 171]).
The algorithm needs the first derivative (tangent stiffness) of the weak form in
order to achieve a quadratic convergence rate. Now we would like to investigate
a little bit the nonlinear hanging truss problem for the Hencky strain measure.
For a starting value of u(0)

2 = 0 m (the iterations are illustrated in figure 3.9 on
the following page), the corresponding values are stated in table 3.1 on page 19.
From the table we can see that the quadratic convergence rate is achieved from
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Chapter 3. Concise theory

Algorithm 1 The Newton-Raphson algorithm

1: i← 0
2: u(i) ← u(start) . Initialize with start vector
3: while

∥∥∥r(u(i))
∥∥∥ > TOL do . Check if converged

4: COMPUTE r(u(i))
5: COMPUTE KT(u(i))
6: SOLVELINEARSYSTEM(KT(u(i))∆u(i) = −r(u(i))) . Solve for ∆u(i)

7: UPDATEDISPLACMENTS(u(i+1) = u(i) + ∆u(i))
8: end while
9: return u(i+1) . Return solution if converged

the second iteration on. That indicates that the starting value is a little bit too far
away from the solution.
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Figure 3.9: Illustration of Newton’s method for an external load of f = 0.25 N with u(0)
2 = 0 m

In contrast to the linear case, nonlinear problems do in general not have a
unique solution. For the hanging truss this can be easily seen if we choose u(0)

2 =
2 m. Figure 3.10 on the following page demonstrates, where the Newton-Raphson
algorithm will arrive for that starting value. Obviously the solution is different
now to the one from figure 3.9. Both solutions are mathematically correct, never-
theless only the first one is mechanically correct.
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Chapter 3. Concise theory

Table 3.1: Newton iterations for an external load of f = 0.25 N

iteration residual u2 abs. error in u2 ∆u2

N m m m

0 −0.2500000000 0.0000000000 0.4296118247 0.2500000000
1 −0.0714851590 0.2500000000 0.1796118247 0.1437788938
2 −0.0117852526 0.3937788939 0.0358329308 0.0342738075
3 −0.0004911629 0.4280527011 0.0015591236 0.0015561032
4 −0.0000009498 0.4296088045 0.0000030202 0.0000030202
5 −0.0000000000 0.4296118247 0.0000000000 0.0000000000
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Figure 3.10: Illustration of Newton’s method for an external load of f = 0.25 N with u(0)
2 = 2 m

3.2 Contact mechanics and the penalty method

Contact is a nonlinear boundary condition. It can be formulated as a constrained
functional. In this section we again stick to the hanging truss example. The two
versions of the example are used again for linear and nonlinear implementations,
respectively. Note that only the penalty method is discussed for constraint en-
forcement, although there are more methods available, like e.g. Lagrange multi-
pliers. The references [31] and [16] give more insight into this topic. The penalty
method cannot enforce the constraint exactly. There is always a slight penetration.
Just mathematically it would be possible, to enforce the constraint exactly by an
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Chapter 3. Concise theory

infinite large penalty stiffness c. On the other hand Lagrange multiplier methods
can enforce the constraint exactly, but they are more complex to implement and
show in general a worse convergence behavior.

3.2.1 Linear contact kinematics

The modified functional can be written as

Π̃ =

Π︷ ︸︸ ︷
1
2

∫
V

[
E(u′(x))2 + u(x)n

]
dV︸ ︷︷ ︸

structural contribution

+

ΠC
Penalty︷ ︸︸ ︷

1
2

∫
∂V

cg2d∂V︸ ︷︷ ︸
penalty contact contribution

(3.41)

Since the hanging truss is a one-dimensional linear example, we can reformulate
the gap function (see equation (4.2) on page 24) to:

g = (u5 − u4) + gini (3.42)

Now the penalty part of the functional reads:

ΠC
Penalty =

1
2

∫
∂V

[
c((u5 − u4) + gini)

2
]

d∂V (3.43)

By applying the rules of variational calculus the first variation of the problem
reads:

δΠC
Penalty = c

∫
∂V

[(u5 − u4) + gini(δu5 − δu4)]d∂V (3.44)

Equation (3.44) has the form δΠ = ∂Π
∂u4

δu4 +
∂Π
∂u5

δu5 in order to render the func-
tional to stationary point the partial derivatives (residual) must become zero as it
must hold for arbitrary virtual displacements (test function scalars). We can refor-

Figure 3.11: Hanging truss subjected to gravity with contact

mulate the weak form now in a linear system of equations. The integral over the
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Chapter 3. Concise theory

body boundaries ∂V can be replaced by a multiplication by the truss cross section
A0 (contact surface), as only one node can come into contact.

KCuC = fC (3.45)

A0c
[

1 −1
−1 1

] [
u4
u5

]
= c

[
gini
−gini

]
(3.46)

The assembled linear equation system for the hanging truss reads now for an
active contact constraint:

 6 −3 0
−3 6 −3
0 −3 3 + c


u2

u3

u4

 =


1
3
1
3

1
6 + gini c

 (3.47)

The solution for an initial gap of gini = 0.1 m is plotted in figure 3.12.
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Figure 3.12: Influence of the penalty stiffness c for linear contact kinematics

3.2.2 Nonlinear contact kinematics

As we now derive a nonlinear contact element, it makes sense to use it in combi-
nation with a nonlinear truss element, even if a combination with a linear truss
element would also be possible. The functional for the nonlinear hanging truss
example including contact is given by:

Π̃ =
1
2

∫
V

[
E(εln)2 + u(x)n

]
dV +

1
2

∫
∂V

[
cg2
]

d∂V︸ ︷︷ ︸
penalty contact contribution

(3.48)
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Figure 3.13: Hanging truss subjected to gravity with contact (nonlinear formulation)

As we will check the contact status in each iteration the gap function simplifies to

g = u3 − u2 (3.49)

Now the penalty part of the functional reads

ΠC
Penalty =

1
2

∫
∂V

[
c(u3 − u2)

2
]

d∂V (3.50)

By applying the rules of variational calculus the first variation of the problem
reads

δΠC
Penalty = c

∫
∂V

[(u3 − u2)(δu3 − δu2)]d∂V (3.51)

The contact contribution to the global residual vector is

rC = cg
[
−1

1

]
(3.52)

From equation (3.51) we can derive the tangent stiffness matrix of the contact
element. Note that the tangent stiffness matrix of the contact element does not
depend on uC. This is because of the one-dimensional case, for which the normal
vector does not change (see chapter 4 for further explanation).

KC
T = c

[
1 −1
−1 1

]
(3.53)

For the nonlinear case special solution techniques are required. Thus, we inves-
tigate a basic contact algorithm which can solve the hanging truss problem (see
algorithm 2). The critical line in the contact algorithm 2 is line number 8. It de-
termines, if contact is active or not. If the penalty method is used, we always
have slight penetrations. This means that the gap is negative for a closed (active)
contact pair. Because we have always this slight penetration it is not necessary
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Chapter 3. Concise theory

Algorithm 2 Contact solution algorithm for the penalty method for small sliding

1: CONTACTSEARCH . Get potential contact pairs
2: i← 0
3: u(i) ← u(start) . Initialize with start vector
4: while

∥∥∥r(u(i))
∥∥∥ > TOL do . Check if converged

5: EVALUTEGAPFUNCTION(uC(i)
) . For all potential contact pairs

6: COMPUTE KT(u(i)) . Global tangent stiffness
7: COMPUTE r(u(i)) . Global residual vector
8: if g(uC(i)

) < 0 then . Contact status is active
9: COMPUTE KC

T(uC(i)
) . Contact tangent stiffness

10: COMPUTE rC(uC(i)
) . Contact residual vector

11: ADDCONTACTSTIFFNESS(KC
T(u

C(i)
)) . Add to KT

12: ADDCONTACTRESIDUAL(rC(uC(i)
)) . Add to r

13: end if
14: SOLVELINEARSYSTEM(KT(u(i))∆u(i) = −r(u(i))) . Solve for ∆u(i)

15: UPDATEDISPLACMENTS(u(i+1) = u(i) + ∆u(i))
16: end while
17: return u(i+1) . Return solution if converged

to check whether the contact force is a pressure force. A tension would create a
positive gap, resulting in a non-active contact pair.

The tangent stiffness matrix and residual vector for an active contact status
reads for the hanging truss example

r = p− f =
1

1 + u2
ln (1 + u2)− cg− 0.25 (3.54)

KT =
1

(1 + u2)2 −
ln(1 + u2)

(1 + u2)2 + c (3.55)

Table 3.2 shows the results for algorithm 2 in detail for a penalty stiffness of
c = 1000 N/m2

Table 3.2: Newton iterations for an external load of f = 0.25 N and c = 1000 N/m2

iteration residual u2 + ∆u2 gap contact status

N m m

0 −0.2500000000 0.2500000000 0.1000000000 open
1 149.9285148411 0.1001459908 −0.1500000000 close
2 −0.0172544573 0.1001632324 −0.0001459908 close
3 −0.0000000003 0.1001632324 −0.0001632324 close
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Chapter 4

The 4-node contact element

In this section the concepts of chapter 3 are generalized to three dimensions to
derive the implemented contact element. It is a node-to-surface formulation in
combination with a penalty method for enforcing the normal constraint. No tan-
gential effects (like friction) are taken into account. The focus in the following lies
on a 4-node contact element. Which means that the master surface is built from
triangular faces. A triangle has the advantage (in contrast to a bilinear quadrilat-
eral) that the normal is constant within a face. No contact smoothing is applied,
hence the normal can jump between neighboring triangles.

4.1 Contact kinematics

In this section an overview of the nonlinear contact kinematics is given. The
basic ideas are always kept as general as possible. The final equations, which are
needed for an implementation, are derived for the 4-node contact element only.

4.1.1 Gap function

Assume that two bodies come into contact. In this case the penetration function
can be written as:

g = (xS − x̄M) ◦ n̄M < 0 (4.1)

In figure 4.1 on the next page the problem of the two body contact is illustrated.
It is assumed that the two contact surfaces are at least locally convex. The gap
function (in the penalty case also called penetration function) is stated as:

g = (xS − x̄M) ◦ n̄M (4.2)

Where the slave node (indicated by the superscript s) is projected onto the master
surface, which results in the projection point x̄M the bar always indicates quanti-
ties evaluated at this projection point. The vectors āM

1 and āM
2 are the covariant

tangent vectors. The unit normal vector n̄M is defined by:

n̄M =
āM

1 × āM
2∥∥āM

1 × āM
2

∥∥ (4.3)
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Chapter 4. The 4-node contact element

The coordinates ξ1, ξ2 are called convective coordinates. They are engraved in
the material, therefore they deform with the material.

Figure 4.1: Gap function illustration

4.1.2 The projection problem

A question which may arise immediately while reading the previous section is
how to compute the slave projection point x̄M. The basic idea is to minimize the
distance b between the slave node and the master segment. This can be expressed
by:

b(ξ1, ξ2) =
∥∥∥xS − xM(ξ̄1, ξ̄2)

∥∥∥ = min
∥∥∥xS − xM(ξ1, ξ2)

∥∥∥ (4.4)

The solution to this problem can be found by setting the first derivative to zero
due to the assumption that we have local convexity of the contact bodies.

db(ξ1, ξ2)

dξα
=

xS − xM(ξ1, ξ2)

‖xS − xM(ξ1, ξ2)‖
◦ dxM(ξ1, ξ2)

dξα
= 0 (4.5)

This can be simplified by using equation (4.7) to

xS − xM(ξ1, ξ2) ◦
dxM(ξ1, ξ2)

dξα
= xS − xM(ξ1, ξ2) ◦ aM

α = 0 (4.6)

dxM(ξ1, ξ2)

dξα
= aM

α (4.7)

For the 4-node contact element (see figure 4.2 on the next page) the equation set
(4.6) is linear. According to figure 4.2 on the following page it is also possible to
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Chapter 4. The 4-node contact element

Figure 4.2: Gap function illustration for a 4-node contact element

define the tangent vectors as

āM
1 = xM

2 − xM
1 (4.8)

āM
2 = xM

3 − xM
1 (4.9)

Because the tangent vectors are constant within the master face equation (4.2) on
page 24 is equivalent to

g = (xS − xM) ◦ nM < 0 (4.10)

The shape functions for a linear triangle may be given by:

N1(ξ1, ξ2) = 1− ξ1 − ξ2 (4.11)
N2(ξ1, ξ2) = ξ1 (4.12)
N3(ξ1, ξ2) = ξ2 (4.13)

By using the isoparametric concept it is possible to interpolate a node on the
master surface by:

xM(ξ1, ξ2) =
3

∑
i=1

Ni(ξ1, ξ2)xM
i (4.14)

Now equation (4.6) on the preceding page reads:[
xS −

3

∑
i=1

Ni(ξ̄1, ξ̄2)xM
i

]
◦ āM

α = 0 (4.15)

[
āM

1 ◦ āM
1 āM

1 ◦ āM
2

āM
1 ◦ āM

2 āM
2 ◦ āM

2

] [
ξ̄1
ξ̄2

]
=

[
(xS − xM

1 ) ◦ āM
1

(xS − xM
1 ) ◦ āM

2

]
(4.16)

Now it is fairly easy possible to compute ξ̄1 and ξ̄2, hence one can compute the
projection point by equation (4.14).
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Chapter 4. The 4-node contact element

4.2 Contact discretization

First we should recall equation (3.41) on page 20 because we will start from the
same functional now. The penalty functional reads:

ΠC
Penalty =

1
2

∫
∂V

cg2d∂V (4.17)

In the following we need to derive a tangent stiffness matrix and a residual force
vector from the functional. If we perform the first variation of equation (4.17) we
arrive at

δΠC
Penalty = c

∫
∂V

gδgd∂V (4.18)

This integral is discretized by the node-to-surface formulation to a sum

δΠC
Penalty = c

∫
∂V

gδgd∂V → c
nc

∑
n=1

Angnδgn (4.19)

where An is the contact surface area which is connected to the slave node n. And
nc is the number of slave nodes used for the discretization of the contact zone.

4.2.1 Variation of the contact penalty functional

Equation (4.19) is already the first variation of the contact contribution. In order
to be able to derive the residual vector from it, δg needs to be expressed in terms
of xM

i and xS. Note that for a triangular master face the normal and hence the
tangent vectors are constant within each face. Note also that xM

i = XM
i + uM

i and
xS = XS + uS. The derivation of δg is expressed in equation (4.24) on the next
page.

4.2.2 Linearization of the variation of the contact penalty func-
tional

The directional derivative (see appendix A.1) is denoted by ∆ in the following.
Keep in mind, that a linearization in terms of the displacements uM

i and uS is
needed. But it would make things to complicated to start right away with the
displacements. Hence, the linearization is derived in step by step manner.

∆δΠC
Penalty = c

nc

∑
n=1

An(∆gnδgn + gn∆δgn) (4.20)

4.2.2.1 Derivation of involved terms

We will derive terms for ∆g, δg and ∆δg in the following paragraphs. After that
we are able to come up with a solution to equation (4.20).
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4.2.2.1.1 The term ∆g We start by applying the generalized chain rule and con-
sider every possible deformation dependence, which yields to

∆g =

[
∆xS − ∆x̄M − dxM(ξ̄1, ξ̄2)

dξ̄α
∆ξ̄α

]
◦ n̄M +

[
xS − x̄M

]
◦ ∆n̄M (4.21)

Equation (4.21) can be considerably reduced by knowing, that n̄M ◦∆n̄M = 0 and
āM

α ◦ n̄M = 0. With the help of appendix A.1 we can derive ∆g now step by step.

∆g = ∆
[
xS − x̄M

]
◦ n̄M = ∆

[
xS −

3

∑
i=1

Ni(ξ̄1, ξ̄2)xM
i

]
◦ n̄M (4.22)

= ∆
[
xS − ((1− ξ̄1 − ξ̄2)xM

1 ) + (ξ̄1xM
2 ) + (ξ̄2xM

3 )
]
◦ n̄M

=



∂[(xS−((1−ξ̄1−ξ̄2)xM
1 )+(ξ̄1xM

2 )+(ξ̄2xM
3 ))◦n̄M]

∂xS

∂[(xS−((1−ξ̄1−ξ̄2)xM
1 )+(ξ̄1xM

2 )+(ξ̄2xM
3 ))◦n̄M]

∂xM
1

∂[(xS−((1−ξ̄1−ξ̄2)xM
1 )+(ξ̄1xM

2 )+(ξ̄2xM
3 ))◦n̄M]

∂xM
2

∂[(xS−((1−ξ̄1−ξ̄2)xM
1 )+(ξ̄1xM

2 )+(ξ̄2xM
3 ))◦n̄M]

∂xM
3


◦


∆uS

∆uM
1

∆uM
2

∆uM
3



=


n̄M

−(1− ξ̄1 − ξ̄2)n̄M

−(ξ̄1)n̄M

−(ξ̄2)n̄M

 ◦


∆uS

∆uM
1

∆uM
2

∆uM
3


= (∆uS − ∆ūM) ◦ n̄M (4.23)

4.2.2.1.2 The term δg The same mechanisms from the previous paragraph can
be applied to derive an equation for δg.

δg = (δxS − δx̄M) ◦ n̄M =

(
δxS −

3

∑
i=1

Ni(ξ̄1, ξ̄2)δxM
i

)
◦ n̄M (4.24)

4.2.2.1.3 The term ∆δg Only ∆δg is missing in order to be able to formulate
the residual vector and tangent stiffness matrix of the 4-node contact element.
But ∆δg is more complicated to derive. We need to start from equation (4.2) on
page 24

g = (xS − x̄M) ◦ n̄M (4.25)

gn̄M = (xS − x̄M) (4.26)

the next step is the variation

δgn̄M + gδn̄M = δxS − δx̄M − x̄M
,α δξ̄α (4.27)
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followed by the linearization of the variation (second order derivatives are ne-
glected)

∆δgn̄M + δg∆n̄M + ∆gδn̄M + g∆δn̄M = −δx̄M
,α ∆ξ̄α−∆ūM

,α δξ̄α− x̄M
,α ∆δξ̄α (4.28)

∆δg + g∆δn̄M ◦ n̄M = (−δx̄M
,α ∆ξ̄α − ∆ūM

,α δξ̄α − x̄M
,α ∆δξ̄α) ◦ n̄M (4.29)

∆δg = (−δx̄M
,α ∆ξ̄α − ∆ūM

,α δξ̄α − x̄M
,α ∆δξ̄α) ◦ n̄M − g∆δn̄M ◦ n̄M (4.30)

There is no need to compute ∆δn̄M, because ∆(n̄M ◦ δn̄M) = ∆n̄M ◦ δn̄M + n̄M ◦
∆δn̄M = 0. Now we have ∆n̄M ◦ δn̄M = −n̄M ◦ ∆δn̄M. Now the linearized
variation of the gap is given by:

∆δg = (−δx̄M
,α ∆ξ̄α − ∆ūM

,α δξ̄α) ◦ n̄M + gδn̄M ◦ ∆n̄M (4.31)

In the following we will derive the last terms which are missing.

4.2.2.1.3.1 The term ∆n̄M First we derive an expression for ∆n̄M

āM
α ◦ n̄M = 0→ ∆āM

α ◦ n̄M + āM
α ◦ ∆n̄M = 0 (4.32)

āM
α ◦ ∆n̄M = −∆āM

α ◦ n̄M

(∆n̄M ◦ āM
α )āMα = −(n̄M ◦ ∆āM

α )āMα

∆n̄M = −(n̄M ◦ ∆āM
α )āMα

∆n̄M = −(n̄M ◦ ∆āM
α )āαβāM

β (4.33)

An expression for ∆āM
α is derived next

āM
α =

dxM(ξ̄1, ξ̄2)

dξ̄α
= dxM(ξ̄1, ξ̄2),α =

N1,α

N2,α

N3,α

 ◦
xM

1

xM
2

xM
3

 (4.34)

Applying the directional derivative reads then

∆āM
α = ∆ūM

,α (4.35)

Finally we have

∆n̄M = −(n̄M ◦ ∆ūM
,α )āαβāM

β (4.36)

4.2.2.1.3.2 The term δn̄M From the previous equation we can directly state
an expression for

δn̄M = −(n̄M ◦ δx̄M
,α )āαβāM

β (4.37)
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4.2.2.1.3.3 The term ∆ξ̄α This time we start with the following relation

(xS − x̄M) ◦ āM
α = 0 (4.38)

The linearization reads

(∆uS − ∆ūM − x̄M
,β ∆ξ̄β) ◦ āM

α + (xS − x̄M) ◦ ∆āM
α = 0

(∆uS − ∆ūM) ◦ āM
α + (xS − x̄M) ◦ ∆āM

α = (x̄M
,β ∆ξ̄β) ◦ āM

α

(∆uS − ∆ūM) ◦ āM
α + (xS − x̄M) ◦ ∆āM

α = (āM
β ∆ξ̄β) ◦ āM

α

(∆uS − ∆ūM) ◦ āM
α + gn̄M ◦ ∆āM

α = ∆ξ̄β(āM
β ◦ āM

α )

(∆uS − ∆ūM) ◦ āM
α + gn̄M ◦ ∆ūM

,α = ∆ξ̄β āαβ[
(∆uS − ∆ūM) ◦ āM

α + gn̄M ◦ ∆ūM
,α

]
āαβ = ∆ξ̄β (4.39)

4.2.2.1.3.4 The term δξ̄α The variation is now trivial

δξ̄β = āαβ
[
(δxS − δx̄M) ◦ āM

α + gn̄M ◦ δx̄M
,α

]
(4.40)

4.2.3 Assembly of the linearization

Finally the linearization can be formulated with respect to the increments of the
displacements. Due to the quite long derivations it is worth, to summarize all
derived equations, before the assembly is done.

Summary

∆g = (∆uS − ∆ūM) ◦ n̄M equ. (4.23) on p. 28

δg = (δxS − δx̄M) ◦ n̄M equ. (4.24) on p. 28

∆δg = (−δx̄M
,α ∆ξ̄α − ∆ūM

,α δξ̄α) ◦ n̄M + gδn̄M ◦ ∆n̄M equ. (4.31) on p. 29

∆n̄M = −(n̄M ◦ ∆ūM
,α )āαβāM

β equ. (4.36) on p. 29

δn̄M = −(n̄M ◦ δx̄M
,α )āαβāM

β equ. (4.37) on p. 29

∆ξ̄β = āαβ
[
(∆uS − ∆ūM) ◦ āM

α + gn̄M ◦ ∆ūM
,α
]

equ. (4.39) on p. 30

δξ̄β = āαβ
[
(δxS − δx̄M) ◦ āM

α + gn̄M ◦ δx̄M
,α
]

equ. (4.40) on p. 30
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Now we can assemble all equations we start with ∆δg.

∆δg = (−δx̄M
,α ∆ξ̄α − ∆ūM

,α δξ̄α) ◦ n̄M + gδn̄M ◦ ∆n̄M (4.41)

= (−δx̄M
,α ∆ξ̄α − ∆ūM

,α δξ̄α) ◦ n̄M − gδn̄M ◦ (n̄M ◦ ∆ūM
,α )āαβāM

β (4.42)

= (−δx̄M
,α ∆ξ̄α − ∆ūM

,α δξ̄α) ◦ n̄M

+ g(n̄M ◦ δx̄M
,α )āαβāM

β ◦ (n̄M ◦ ∆ūM
,χ )āχγāM

γ (4.43)

= (−δx̄M
,α ∆ξ̄α − ∆ūM

,α δξ̄α) ◦ n̄M + g āαχ(n̄M ◦ δx̄M
,α )(n̄

M ◦ ∆ūM
,χ ) (4.44)

= (−δx̄M
,α ∆ξ̄α − ∆ūM

,β āαβ
[
(δxS − δx̄M) ◦ āM

α + gn̄M ◦ δx̄M
,α

]
) ◦ n̄M (4.45)

+ g āαχ(n̄M ◦ δx̄M
,α )(n̄

M ◦ ∆ūM
,χ )

= (−δx̄M
,α ∆ξ̄α − ∆ūM

,β āαβ
[
(δxS − δx̄M) ◦ āM

α

]
) ◦ n̄M (4.46)

= −(δx̄M
,α ∆ξ̄α) ◦ n̄M − (∆ūM

,β ◦ n̄M)āαβ((δxS − δx̄M) ◦ āM
α ) (4.47)

= −∆ξ̄αδx̄M
,α ◦ n̄M − āαβ(δxS − δx̄M) ◦ (āM

α ⊗ n̄M)∆ūM
,β (4.48)

= −∆ξ̄αδx̄M
,α ◦ n̄M − āαβ(δxS − δx̄M) ◦ (āM

α ⊗ n̄M)∆āM
β (4.49)

We can now start to assemble the last equation. This is the linearization of the
first variation of equation (4.20) on page 27. Combining equation (4.49) and equa-
tion (4.39) on the previous page yields:

g∆δg = g
[
−āαβ

[
(∆uS − ∆ūM) ◦ āM

α + gn̄M ◦ ∆ūM
,α

]
δx̄M

,β ◦ n̄M

−āαβ(δxS − δx̄M) ◦ (āM
α ⊗ n̄M)∆āM

β

] (4.50)

Lets separate all terms belonging to g and g2, respectively.

g∆δg =

g
[
−āαβ

[
(∆uS − ∆ūM) ◦ āM

α

]
δx̄M

,β ◦ n̄M − āαβ(δxS − δx̄M) ◦ (āM
α ⊗ n̄M)∆āM

β

]
− g2 āαβ

[
n̄M ◦ ∆ūM

,α

]
δx̄M

,β ◦ n̄M

(4.51)

It is possible to reformulate equation (4.51) by using (l ⊗m)o = (o ◦m)l (see
also [7, page 21])

g∆δg =

− g
[
δx̄M

,α (n̄
M ⊗ āαβāM

β ) ◦ (∆uS − ∆ūM) + (δxS − δx̄M) ◦ (āαβāM
α ⊗ n̄M)∆āM

β

]
− g2

[
āαβδx̄M

,α (n̄
M ⊗ n̄M) ◦ ∆āM

β

]
(4.52)
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For one contact element we now have for the linearized variation

∆δΠC e
Penalty = cAn

{
(δxS − δx̄M) ◦ (n̄M ⊗ n̄M)(∆uS − ∆ūM)

− g
[
δx̄M

,α (n̄
M ⊗ āαβāM

β ) ◦ (∆uS − ∆ūM)

+ (δxS − δx̄M) ◦ (āαβāM
α ⊗ n̄M)∆āM

β

]
−g2

[
āαβδx̄M

,α (n̄
M ⊗ n̄M) ◦ ∆āM

β

]}
(4.53)

By introducing the contravariant base vectors āαβāM
α = āMβ and recalling equa-

tion (4.35) on page 29 the final form of equation (4.20) on page 27 is obtained.

∆δΠC e
Penalty = cAn

{
(δxS − δx̄M) ◦ (n̄M ⊗ n̄M)(∆uS − ∆ūM)

− g
[
δx̄M

,α (n̄
M ⊗ āMα) ◦ (∆uS − ∆ūM)

+ (δxS − δx̄M) ◦ (āMβ ⊗ n̄M)∆ūM
,β

]
−g2

[
āαβδx̄M

,α (n̄
M ⊗ n̄M) ◦ ∆ūM

,β

]}
(4.54)

4.2.4 Residual vector and tangent stiffness matrix

First let us introduce some vectors:

m f =


n̄M

−N1n̄M

−N2n̄M

−N3n̄M

 , mα =


0

−N1,αn̄M

−N2,αn̄M

−N3,αn̄M

 , tβ =


āMβ

−N1āMβ

−N2āMβ

−N3āMβ

 (4.55)

For the unknowns we introduce:

δx f =


δxS

δxM
1

δxM
2

δxM
3

 , ∆u f =


∆uS

∆uM
1

∆uM
2

∆uM
3

 (4.56)

With these vectors we can rewrite equation (4.54) to

∆δΠC e
Penalty = δxT

f KC
T∆u f

and equation (4.19) on page 27 reads:

δΠC e
Penalty = δxT

f rC

So residual vector for the 4-node contact element is defined by:

rC = c An g m f (4.57)
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and the tangent stiffness matrix is

KC
T =

c An

{ linear part︷ ︸︸ ︷
(m1 ⊗m1)−g

[
(m1 ⊗ t1) + (m2 ⊗ t2) + (t1 ⊗m1) + (t2 ⊗m2)

+g
(

a11(m1 ⊗m1) + a12(m1 ⊗m2 + m2 ⊗m1) + a22(m2 ⊗m2)
)]}

(4.58)

4.3 Summary

The penalty 4-node contact element can be integrated in a FE-framework almost
exactly as a nonlinear structural element. Although the change of contact sta-
tus during the solution iterations yields to a severe discontinuity in the solution
space. Therefore such changes are also known as SDIs (Severe Discontinuity Iter-
ations). Because of the possibility of contact status change, contact elements need
to be treated special. For further information please refer to chapter 5.

A nice property of equation (4.58) is that it is symmetric in the displacement
increments ∆u f . That allows the use of a symmetric solver for each iteration.
Note that most of the derivations in this chapter can be proven mathematically
with the help of [7, chapter 1].

As the gap function is not differentiable the quadratic convergence can only
be reached when the contact status is not changing anymore (no SDIs). Because
just the linear term in equation (4.58) does not depend on the gap g, this term can
be used in the first stages of the Newton-Raphson iterations, where SDIs occur
to approximate the tangent stiffness matrix. Because of the dependence of the
other terms on g they can get quite large within the first iterations and lead to
divergence. Another reason for an approximation of the tangent during the first
iterations is that the tangent matrix (equation (4.58)) is in general not positive-
semidefinite. It is indefinite, hence it has negative eigenvalues. This is mainly
caused by the second term. For a high penalty stiffness in combination with large
overclosures in the first Newton-Raphson iterations, this can take preeminence
and lead to divergence.
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Implementation in Carat++

This chapter deals with implementation details. The nonlinear object-oriented
finite element software Carat++ will be used as a basis for the implementation.
Due to the class structure (see figure 5.1) the contact can be implemented with-
out major changes in the code structure. The contact element can in general be

Figure 5.1: UML like diagram of object-oriented mechanical contact implementation

treated as a standard element (truss, shell or continuum). On top of the standard
properties the contact element has the ability to change its status from active to

34



Chapter 5. Implementation in Carat++

deactive or the other way around. This is one of the major reasons, why contact
problems are difficult to solve.

1.1

5.1 Surface class

The surface class is used in order to be able to define the potential contact partners.
There are two types of surfaces. One is node-based, which means that the surface
is a cloud of nodes. The other one is face-based, that means the information of
the underlying element topology can be reconstructed.

5.1.1 User input block for the surface class

The node-based surface is used for the slave surface. The user has to provide a
unique surface ID and a list of nodes which build up the slave surface.

Inputblock 5.1: Node-based surface

SURFACE 1 : NODE

1, 2, 3, 4, 5,

6, 7, 8, 9

The face-based surface also needs a unique identifier. Here the data is not only a
node cloud. The user must specify for each element a face identifier.

Inputblock 5.2: Face-based surface

SURFACE 2 : ELEMENT

1, S1

3, S2

Let us assume that element 1 and 3 are triangular elements, in this case element 1
would define the contact surface by a positive normal and element 3 by a negative
normal. This concept can easily be expanded to continuum elements.

5.1.2 Implementation details for the surface class

The surface identifiers for the triangular elements are such that a mathematical
positive node numbering defines the normal . This means that if the user would
like to have the red face of the element shown in figure 5.2 on the next page as part
of the contact surface he must provide S1 for this element. If the user would like
the contact surface to be build up by the bottom face of the element (not visible
in figure 5.2 on the following page) he or she has to provide S2 for this element.

5.1.3 Applications and limitations of the implementation

At the moment the surface concept can only be used with contact. The face identi-
fiers do only work with triangular elements. Surfaces can only be used for contact
master surfaces.
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Figure 5.2: Surface identifiers for a triangular element

5.1.4 Possible enhancements

The surface concept could be generalized to surface coupled problems(like fluid-
structure interaction). It can also be used for surface loads (like pressure or snow).
The surface identifiers should become a standard data member of each element.

5.2 Contact property class

This class defines the physical properties of the contact and it defines the con-
straint enforcement method. Depending on the enforcement method the corre-
sponding parameters are also defined within this class.

5.2.1 User input block for the contact property class

The input block for the contact property block is called SURFACE-INTERACT-
ION, indicating that it could be used also for other surface-coupled problems.
Within this input block the user must also specify a unique identifier, because it
is possible to have more SURFACE-INTERACTION blocks within one analysis.

Inputblock 5.3: Surface interaction block defines contact properties

SURFACE-INTERACTION 1

PHYSICAL-NORMAL-BEHAVIOR=HARD

PHYSICAL-TANGENTIAL-BEHAVIOR=NOFRICTION

CONSTRAINT-ENFORCEMENT-NORMAL=PENALTY_CONST

PENALTY_PARAMETER =1e5

5.2.2 Implementation details for the contact property class

So far only four parameters are implemented. The first one is the PHYSICAL-
NORMAL-BEHAVIOR. At the moment it can just deal with one option (HARD).
This parameter does not indicate which enforcement method is used, it defines
the physical normal behavior. There are situations, where the contact constraint
is not always a hard enforced constraint. In fact in nature the contact phenomena
is a "soft" process. This is because of the microstructure of the contact surfaces
(they are never flat). If the user would like to account this phenomena, it must be
possible to define a force-displacement curve until the bodies are in full contact

36



Chapter 5. Implementation in Carat++

and hence are supported by the underlying stiffness of the deformable bodies.
A further application could be, if surface coating should be taken into account.
As a counterpart for the normal direction a second parameter must be specified,
which defines the tangential behavior (PHYSICAL-TANGENTIAL-BEHAVIOR).
So far only frictionless contact is possible. Last but not least parameters for the
chosen enforcement method must be specified. For this implementation only the
penalty method is possible.

5.2.3 Applications and limitations of the implementation

Some of the limitations have already been discussed in the previous subsection.
Therefore we will only discuss the limitations in combination with the penalty
method here. The penalty method needs a penalty stiffness, which can in general
be a function of the gap. At the moment only a constant penalty stiffness can be
provided. Equation (4.58) on page 33 needs also the associated slave surface area
for each contact element An. This is assumed to be one at the current state of the
implementation.

5.2.4 Possible enhancements

The list for possible enhancements associated with a SURFACE-INTERACTION
object is very long and not everything can be discussed. The least implementation
efforts are to implement the dependency on the slave surface area and different
dependencies of the penalty stiffness on the gap.

The contact could be expanded by tangential contributions to the functional,
which is e.g. friction. There are different frictional models, which could be im-
plemented. The normal enforcement methods could be enriched by Lagrange
multiplier methods and augmented Lagrange methods.

5.3 Contact pair class

This class needs two surface objects (type NODE and type ELEMENT) and one
contact property object (see also figure 5.1 on page 34). This class performs the
contact search.

5.3.1 User input block for the contact pair class

The user must specify a SLAVE-SURFACE, which is of type NODE and a MAS-
TER-SURFACE, which is of type ELEMENT. Furthermore a link to the contact
property class has to be provided. A crucial option is the CONTACT-TRACKING
approach. SMALL-SLIDING means that the contact pairings are kept constant
within one load increment. FINITE-SLIDING on the other hand means, that the
pairings are redetermined at each iteration of the nonlinear solution procedure.
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The CONTACT-DISCRETIZATION methods could be expanded to SURFACE-
TO-SURFACE methods (e.g. mortar methods). At the moment only NODE-TO-
SURFACE is implemented.

Inputblock 5.4: Contact pair with its properties

CONTACT-PAIR 1

SLAVE-SURFACE = SURFACE 1

MASTER-SURFACE = SURFACE 2

CONTACT-PROPERTIES = SURFACE-INTERACTION 1

CONTACT-TRACKING = SMALL-SLIDING !FINITE-SLIDING

CONTACT-DISCRETIZATION = NODE-TO-SURFACE

5.3.2 Implementation details for the contact pair class

The contact searching is the most computational effort in this class. It consists of
a nested loop (one runs over master faces the other over the slave nodes), which
projects each slave node on each master face. In the following it is checked, if
the projected slave node is inside the master face. If so, a contact element will
be generated for this slave node master face pairing (see algorithm 3). At the
moment only SMALL-SLIDING is implemented. The big advantage of SMALL-
SLIDING is that the matrix structure is preserved during each load increment. In
order to be able to take SDIs into account the contact elements, which have a open
contact status get a zero tangent stiffness and a zero residual force vector.

Algorithm 3 The contact search algorithm

1: TOL← 0.000000001
2: for i← 1, num_slave_nodes do
3: for j← 1, num_master_ f aces do
4: slave_coord← GETSLAVECOORD(i)
5: . Get slave node coordinates for slave node i
6: master_coord← GETMASTERCOORD(j)
7: . Get all master face node coordinates for master face j
8: ξ̃1, ξ̃2← COMPUTEPROJECTION(slave_coord, master_coord)
9: N1, N2, N3← EVALUATESHAPEFUNCTIONS(ξ̃1, ξ̃2)

10: if (N1 ≥ −TOL and N1 ≤ 1 + TOL) and (N2 ≥ −TOL and N2 ≤
1 + TOL) and (N3 ≥ −TOL and N3 ≤ 1 + TOL) then

11: return CONTACTPAIRFOUND . A valid contact pair is found
12: end if
13: end for
14: end for

5.3.3 Applications and limitations of the implementation

The FINITE-SLIDING approach does not work at the moment. FINITE-SLIDING
demands a new tangent matrix structure in each iteration and a redetermination
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of contact pairs in each iteration. The implemented contact searching algorithm is
a rather simple approach and could get in troubles, if the difference in the normal
between aligned master faces is too large.

5.3.4 Possible enhancements

As a remedy of the previous subsections a more sophisticated contact searching
algorithm would be one possible enhancement. Also the possibility to change the
matrix structure from iteration to iteration is a good enhancement in order to be
able to model contact problems with large tangential sliding.

Adding different contact discretization schemes (like mortar based methods)
is not a straight forward task and would take considerably more effort.

5.4 Contact class

The contact class is the master class for contact. It has access to the hole structure
of the contact problem. It can be linked to several contact pair objects.

5.4.1 User input block for the contact class

The contact class expects a link (or several links) to contact pair objects.

Inputblock 5.5: Contact pair

CONTACT 1

CONTACT-PAIRS = CONTACT-PAIR 1

In order to activate contact the user must activate the contact object in the analysis
input block.

Inputblock 5.6: Contact activation flag in the analysis block

PC-ANALYSIS 1: STA_GEO_NONLIN

PATHCONTROL = FORCE ! or DISPLACEMENT or ARCLENGTH

SOLVER = PC-SOLVER 2

OUTPUT = PC-OUT 1

COMPCASE = LD-COM 1

DOMAIN = EL-DOMAIN 1

NUM_STEP = 1

MAX_ITER_EQUILIBRIUM = 20

EQUILIBRIUM_ACCURACY = 1e-08

CURVE = LD-CURVE 1

TRACED_NODE = 39

TRACED_NODAL_DOF = DISP_Y

CONTACT = CONTACT 1
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5.4.2 Implementation details for the contact class

The contact object delivers a vector of active contact elements to the nonlinear
static analysis.

5.4.3 Applications and limitations of the implementation

The present implementation can only handle static nonlinear problems, but it
could be expanded to dynamic applications. For implicit dynamic problems the
contact front has to be tracked within the time increments in order to prevent
excessively large penetrations.

5.5 Contact element class

The contact element class delivers the tangent stiffness matrix and residual force
vector (see equation (4.58) on page 33 and equation (4.57) on page 32) for each
contact element. See chapter 4 in order to get insight into the implementation.

5.6 Summary

The implemented contact algorithm can be characterized by nonlinear kinematics,
by the use of the penalty method for constraint enforcement and by the contact
discretization, which is node-to-surface. The object structure should easily allow
to extend the implemented contact algorithm in various directions. The provided
object structure could also be extended to the superior class of surface-coupled
problems, where mechanical contact is one special case.

This implementation is a start point for contact mechanics in CARAT++. It
should be expanded by several enhancements in order to be able to model com-
plicated physical phenomena. For more information please see also appendix C.
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Chapter 6

Results and conclusion

In the following some classical and non-classical contact examples are discussed.
At the end of the chapter a conclusion for the implemented contact algorithm is
provided.

6.1 Shell versus truss

The first example is the simplest. A truss penetrates in the initial configuration
a triangular shell element through its center of gravity. In this scenario only one
contact element will be generated. The Carat++ input file and the contact ele-
ment tangent stiffness matrix for the first iteration are stated in appendix C on
page 67 for this problem. If contact is activated the shell element starts to bend
and the truss is subjected to a compressive load. The configuration in equilibrium
is sketched in figure 6.1. The iteration history for this simple test case is stated in

Figure 6.1: The setting for the “shell versus truss” example (undeformed and deformed)

table 6.1 on the following page. The convergence rate is not fully quadratic be-
cause the shell element does not have a plane face. If the shell element is replaced
by a face of a linear tetrahedral element, the full quadratic convergence rate is
obtained. By looking at the support forces of node two and three the symmetry
is preserved within round-off errors.
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Table 6.1: Iteration history for the “shell versus truss” example

iteration ‖r‖2 ‖∆u‖2 gap

N m m

0 −0.010000
1 0.01054093 0.02628460 −0.000636
2 0.00015114 0.00129987 −0.000637
3 0.00000038 0.00000608 −0.000636
4 0.00000000 0.00000002 −0.000636
5 0.00000000 0.00000000 −0.000636

6.2 Contact patch test

The contact patch test is a method to check, if the contact formulation is able to
transfer a constant stress field. If two bodies, which are in contact are subjected to
a spatially constant stress field the contact formulation should be able to exactly
transmit this stress field from one body to another. If the formulation can do so
for arbitrary non-conforming contact interfaces, the contact formulation passes
the patch test [16, 34, 36].

The setting of the contact patch is illustrated in figure 6.2. The green upper
block is referred to as top block in the following, the blue one as bottom block.

Figure 6.2: The setting for the contact patch test

6.2.1 Finite element solution to the problem

In order to be able to use the triangle based contact algorithm, the contact faces of
the brick elements at the master side were equipped with an additional layer of
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thin shell elements (see figure 6.3 for top master triangulation and figure 6.4 for
the bottom triangulation).

Figure 6.3: The triangulated master surface of the top block

Figure 6.4: The triangulated master surface of the bottom block

The contact algorithm is tested with three different settings (see table 6.2 on
the following page). At first the easiest approach is taken. The lower surface
(bottom block) is used for the master and the upper one for the slave surface. In
general one should use the coarsest mesh as master surfaces. This avoids exces-
sive penetrations. For the first setting the stress in y-direction σy is plotted in
figure 6.5 on the next page the undeformed configuration is also indicated. The
closeup of the contact zone (figure 6.6 on the following page) shows clearly a
zigzagging in the displacements.
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Table 6.2: Chosen values for different contact patch test settings

Setting ID E p c ν Master Slave

N/m2 N/m2 N/m2

1 100 2 1.0 · 105 0 bottom top
2 100 2 1.0 · 105 0 bottom/top top/bottom
3 100 2 1.0 · 1010 0 bottom/top top/bottom

Figure 6.5: σy for the patch test of setting 1 (deformation scale factor is 15)

Figure 6.6: σy for the patch test of setting 1 (deformation scale factor is 45)

For the second setting a double contact is defined and the penalty stiffness is
kept constant in comparison with setting 1. Double contact means, that the lower
surface is used as master surface and the upper one as slave surface and vice versa
for the second contact pair. With this approach there is no zigzagging anymore
in the contact zone (see figure 6.7 on the next page) but the patch test is still
not fulfilled. For the last setting the penalty stiffness is adjusted in comparison
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Figure 6.7: σy for the patch test of setting 2 (deformation scale factor is 15)

to setting 2. By using the new value for the penalty stiffness (see table 6.2 on
the preceding page) and a double contact the patch test is passed to machine
precision (see figure 6.8).

Figure 6.8: σy stress for the patch test of setting 3 (deformation scale factor is 15)

6.2.2 Discussion of results

Setting 1 clearly fails the patch test. This is not directly related to the penalty
method, it is mainly a problem coming from the node-to-surface discretization.
The structure does not need much energy to go from a flat configuration to the
zigzagging configuration, even if there would no slave node penetration be al-
lowed (e.g. by Lagrange multipliers). Small disturbances during the iteration
process are sufficient to cause slight zigzagging which is not reduced by the con-
tact pressure. The main problem is that only slave node versus master face pen-
etration is checked by the node-to-surface discretization. The node-to-surface
discretization does not care about master nodes which are penetrating the slave
surface (this is illustrated in figure 6.9 on the following page). The deformation
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Figure 6.9: Allowed configurations for node-to-surface discretization

pattern is recognized easily by looking at figure 6.10. If double contact is defined
the severe zigzagging pattern is suppressed. The slight noise in the stress field
is induced by slightly different slave node penetrations coming from the penalty
method. If the penalty stiffness is adopted to a fairly large value, the contact patch
test is finally passed.
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Figure 6.10: Displacement u of the contact interface for different settings

6.3 Hertzian contact problem

Heinrich Hertz derived [11] an analytical solution for bilateral and unilateral con-
tact problems. He made the following assumptions:

• linear elastic, homogeneous and isotropic material

• plain contact zone which is small compared to the dimensions of the contact
bodies
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• frictionless contact→ no shear stress in the contact zone

• contact bodies are regarded as half spaces

• no adhesive forces (e.g. van der Waals forces)

6.3.1 Cylinder versus cylinder

For the problem, where two infinitely long cylinders come in contact, the Hertz
solution for the maximal contact pressure σymax reads:

σymax =

√
f E

2πrlz(1− ν2)
(6.1)

where the generalized Young’s modulus E, generalized radius r and generalized
Poisson’s ratio ν are defined by:

E = 2
E1E2

E1 + E2

r =
r1r2

r1 + r2

1− ν2 =
E
2

(
1− ν2

1
E1

+
1− ν2

2
E2

)

Furthermore Hertz derived a formula for the width of the contact zone (which
has rectangular shape). The width is denoted by s and can be found by:

s =

√
8 f r(1− ν2)

πElz
(6.2)

It is worth to be mentioned, that the contact pressure distribution has circular
shape over x. Figure 6.11 on the following page shows the setting. For the ref-
erence examples the values from table 6.3 were selected. With these values the

Table 6.3: Chosen values for the example problem

E1 E2 r1 r2 ν1 ν2 lz f

N/m2 N/m2 m m m N/m

1 1 5 5 0 0 0.01 4.0 · 10−6

derived quantities can be computed (see table 6.4 on the following page).
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Figure 6.11: Setting for the Hertz contact case “elastic cylinder versus elastic cylinder”

Table 6.4: Analytical solution to the example problem

σymax s

N/m2 m

0.00504 0.05046

6.3.1.1 Finite element solution to the problem

The finite element model is built up by linear brick elements (standard Galerkin
elements). The mesh has only one element in z-direction. The fact that ν = 0
assures, that one can achieve a plain strain and plain stress state at the same time.

This contact problem is symmetric, therefore only half of the geometry is mod-
eled. The mesh in the potential contact zone is shown in figure 6.12. As the imple-

Figure 6.12: Mesh for the Hertzian contact problem cylinder vs. cylinder

mented contact algorithm does only work with a triangulated master surface, the

48



Chapter 6. Results and conclusion

same trick as for the contact patch test is applied, in oder to be able to simulate
this setting. This procedure shows good convergence in a static simulation.

Figures 6.13a to 6.13k show the evolution of the stress in y-direction σy over
the pseudo time. The load is ramped up by 1 % per second pseudo time.

(a) 1 s (b) 10 s

(c) 20 s (d) 30 s

Figure 6.13: Evolution of σy and contact status over pseudo time
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(e) 40 s (f) 50 s

(g) 60 s (h) 70 s

Figure 6.13: Evolution of σy and contact status over pseudo time
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(i) 80 s (j) 90 s

(k) 100 s

Figure 6.13: Evolution of σy and contact status over pseudo time
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6.3.1.2 Discussion of results

First one should be aware, that the Hertzian assumptions are satisfied. The mate-
rial law is isotropic linear elastic. The contact zone is small, which can be deduced
from figure 6.14. Also compliance of the half space assumption can be derived
from figure 6.14. No adhesion forces are modeled, therefore this assumption is

Figure 6.14: Stress σy and real displacement at 100 s

also satisfied. From chapter 4 we also know, that there are no frictional forces
addressed in the implemented contact formulation. The infinite z-dimension is
modeled by appropriate boundary conditions. Hence it is possible to compare
the finite element solution to the analytical one from Hertz.

In figure 6.15 on the following page the normalized stress −σy is plotted over
the normalized distance. For the normalization the analytical values from ta-
ble 6.4 on page 48 were taken.

For a fairly coarse mesh in the context of stress evaluation this is a good result.
To be able to compare the solution with a state of the art finite element software
package, Abaqus was selected. Within this software package the settings were set
such that they are as close as possible to the Carat++ contact implementation. It
was also a node-to-surface formulation picked with a penalty based enforcement
method rule.

Due to the trick with the triangulated master surface and the non-matching
meshes the problem is non-symmetric. That means that the force from the slave
node to the master surface does neither act on the center of gravity of the mas-
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Figure 6.15: σy(x) over x for analytical solution, Abaqus solution and Carat++ solution

ter faces nor at the corner nodes of the master faces. Therefore it is also worth
to check the stress distribution in z-direction. From theory an constant stress is
expected. Figure 6.16 equates to this exception.

Figure 6.16: Stress σy in z-direction

The slight zigzagging of the stress in y-direction σy(x) along x which is ob-
served in figure 6.15, should be further examined. A detailed contour plot of
this phenomena is shown in figure 6.17 on the following page. This is caused
by slightly different slave node penetration distances due to the penalty method
in combination with a non-linear solution method. Of course there are more rea-
sons for this phenomena like round-off errors, the element formulation and the
numerical integration. But investigations and comparisons with other contact for-
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mulations in Abaqus show that the main reason are the input errors in the node
coordinates and that the patch test is not fulfilled for a single master-slave pairing
(see also section 6.2 on page 42).

Figure 6.17: Stress σy(x) close up

6.4 Sphere to egg morphing

The following test scenario was designed in order to illustrate the capabilities of
the implemented contact algorithm. It is not intended to give deeper mechanical
insight. A sphere is subjected to internal snow load. The sphere is clamped on
three nodes lying on the equator. The sphere initially penetrates the floor. The
floor can deform within the contact zone of the sphere and is clamped outside.
The floor and the sphere are both modeled with triangular shell elements. The
setting is summarized in figure 6.18.

Figure 6.18: The setting of the “sphere to egg morphing” problem
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Figure 6.19 shows the first two load steps of the scenario. The deformation plots
of the other load steps and an additional view can be found in appendix B.1.

(a) Frame 01 (b) Frame 01

(c) Frame 02 (d) Frame 02

Figure 6.19: Sphere to egg morphing in two different views

6.4.1 Discussion of the deformation plots

Due to the coarse mesh there are moderate jumps in the normals of neighboring
triangles. Although the contact searching approach is rather simple it works fine
for this example, where the circumstances are not too easy. The problem was
modeled without any symmetries. This causes a continuous change of the contact
zone between sphere and floor. The basic implementation of contact can already
represent quite complicated scenarios very well.

6.5 Concluding remarks

Although the contact algorithm is not highly sophisticated it gives very good re-
sults for the Hertzian contact example. With some tricks it is even possible to
pass the contact patch test. It also handles examples with moderate large defor-
mations (sphere to egg morphing) very well. With some of the enhancements
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discussed in chapter 5 it could deal with a large number of problems. If one uses
second order elements, one has to take care of the mid nodes. Because of the non-
uniform element load vector, the mid nodes need a special treatment. One very
simple approach is to constrain the mid node movement in the contact zone to
the movement of the corner nodes.

The implementation process showed, that also in computational contact me-
chanics the object-oriented approach is a big advantage. Changes in the code are
fairly simple to implement and the implementation effort for new features is less
than in classical procedural programming.
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Appendix A

Mathematical preliminaries

A.1 Directional derivative

Let f : Rn → R where f (x1, ..., xn) and ∆u ∈ Rn then the directional derivative is
given by

∂ f (x1, ..., xn)

∂∆u
= ∇ f (x1, ..., xn) ◦ ∆u := ∆ f (x1, ..., xn) (A.1)

A.2 Generalized chain rule

Let f : Rn → R and gi(t) : R → R ∀ i = 1, ..., n then the generalized chain rule
gives the derivative of f with respect to t as

d f (g1(t), ..., gn(t))
dt

=
n

∑
k=1

∂ f (g1(t), ..., gn(t))
∂gk

dgk(t)
dt

(A.2)

58



Appendix B

Additional figures

B.1 Sphere to egg morphing

(B.1.1) Frame 01 (B.1.2) Frame 01

(B.1.3) Frame 02 (B.1.4) Frame 02

Figure B.1: Sphere to egg morphing in two different views
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(B.1.5) Frame 03 (B.1.6) Frame 03

(B.1.7) Frame 04 (B.1.8) Frame 04

(B.1.9) Frame 05 (B.1.10) Frame 05

Figure B.1: Sphere to egg morphing in two different views

60



Appendix B. Additional figures

(B.1.11) Frame 06 (B.1.12) Frame 06

(B.1.13) Frame 07 (B.1.14) Frame 07

(B.1.15) Frame 08 (B.1.16) Frame 08

Figure B.1: Sphere to egg morphing in two different views

61



Appendix B. Additional figures

(B.1.17) Frame 09 (B.1.18) Frame 09

(B.1.19) Frame 10 (B.1.20) Frame 10

(B.1.21) Frame 11 (B.1.22) Frame 11

Figure B.1: Sphere to egg morphing in two different views
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(B.1.23) Frame 12 (B.1.24) Frame 12

(B.1.25) Frame 13 (B.1.26) Frame 13

(B.1.27) Frame 14 (B.1.28) Frame 14

Figure B.1: Sphere to egg morphing in two different views
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(B.2.1) Frame 01 (B.2.2) Frame 02

(B.2.3) Frame 03 (B.2.4) Frame 04

(B.2.5) Frame 05 (B.2.6) Frame 06

Figure B.2: Sphere to egg morphing (view: sphere cut at the equator)
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(B.2.7) Frame 07 (B.2.8) Frame 08

(B.2.9) Frame 09 (B.2.10) Frame 10

(B.2.11) Frame 11 (B.2.12) Frame 12

Figure B.2: Sphere to egg morphing (view: sphere cut at the equator)
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(B.2.13) Frame 13 (B.2.14) Frame 14

Figure B.2: Sphere to egg morphing (view: sphere cut at the equator)
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Shell versus truss example

Input file C.1: One degree of freedom example
!###################################################################

!#### PC-BLOCK ####

!###################################################################

! Truss vs Shell

!===================================================================

PC-PROBLEM

MASTERJOB = PC-ANALYSIS 1

!===================================================================

!===================================================================

PC-ANALYSIS 1: STA_GEO_NONLIN

PATHCONTROL = FORCE ! or DISPLACEMENT or ARCLENGTH

SOLVER = PC-SOLVER 5

OUTPUT = PC-OUT 1

COMPCASE = LD-COM 1

DOMAIN = EL-DOMAIN 1

NUM_STEP = 1

MAX_ITER_EQUILIBRIUM = 20

EQUILIBRIUM_ACCURACY = 1e-08

CURVE = LD-CURVE 1

TRACED_NODE = 4

TRACED_NODAL_DOF = DISP_Z

CONTACT = CONTACT 1

!===================================================================

!===================================================================

PC-SOLVER 5: CROUT_SKYLINE

BANDWITH = CUTHILL_MCKEE

!===================================================================

!===================================================================

PC-OUT 1 : GID

GEOM=1

DISP=1

SUPPORT_FORCE =1

STRESS =1

!===================================================================

!###################################################################

!#### ND-BLOCK ####

!###################################################################

!===================================================================

!==================================================================

ND-COOR

NODE 1 X 0.0000000 Y 1.0000000 Z 0.0000000

NODE 2 X -0 .8660000 Y -0 .5000000 Z 0.0000000

NODE 3 X 0.8660000 Y -0 .5000000 Z 0.0000000

NODE 4 X 0.0000000 Y 0.0000000 Z -0 .0010000

NODE 5 X 0.0000000 Y 0.0000000 Z 1.0000000

!==================================================================
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!==================================================================

BC-DIRICHLET 1: SPC-ZERO

NODE 2 DISP_X , DISP_Y , DISP_Z , DIR_DIFF_SHELL8_X , DIR_DIFF_SHELL8_Y ,

DIR_DIFF_SHELL8_Z

NODE 3 DISP_X , DISP_Y , DISP_Z , DIR_DIFF_SHELL8_X , DIR_DIFF_SHELL8_Y ,

DIR_DIFF_SHELL8_Z

NODE 4 DISP_X , DISP_Y

NODE 5 DISP_X , DISP_Y , DISP_Z

!==================================================================

!###################################################################

!#### CONTACT-BLOCK ####

!###################################################################

!==================================================================

SURFACE 2 : NODE

4

!==================================================================

!==================================================================

SURFACE 1 : ELEMENT

1, S1

!==================================================================

!==================================================================

SURFACE-INTERACTION 1

PHYSICAL-NORMAL-BEHAVIOR=HARD

PHYSICAL-TANGENTIAL-BEHAVIOR=NOFRICTION

CONSTRAINT-ENFORCEMENT-NORMAL=PENALTY_CONST

PENALTY_PARAMETER =1.0

!==================================================================

!==================================================================

CONTACT-PAIR 1

SLAVE-SURFACE = SURFACE 2

MASTER-SURFACE = SURFACE 1

CONTACT-PROPERTIES = SURFACE-INTERACTION 1

CONTACT-TRACKING = SMALL-SLIDING !FINITE-SLIDING

CONTACT-DISCRETIZATION = NODE-TO-SURFACE

!==================================================================

!==================================================================

CONTACT 1

CONTACT-PAIRS = CONTACT-PAIR 1

!==================================================================

!###################################################################

!#### EL-BLOCK ####

!###################################################################

!===================================================================

EL-PART 1 NAME=Shell

!===================================================================

!===================================================================

EL-MAT 1 : LIN_ELAST_ISOTROPIC

EMOD=1 ALPHAT =0.0 DENS =7810 NUE =0.0 XSI =1.2

!===================================================================

!===================================================================

EL-PROP 1 : SHELL8

MAT = EL-MAT 1

THICKNESS= 0.1

INT_TYPE_SHELL8 = FULL

SDC= 1.0

EAS = 0,0,0,0,0

ANS = NONE

FORCE = RST_ORTHO

!===================================================================

!===================================================================
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EL-PART 2 NAME=truss

!===================================================================

!===================================================================

EL-PROP 2 : TRUSS1

MAT= EL-MAT 1 AREA =1.0

PRESTRESS SIG11 =0.0

LAGRANGE=TOTAL

!===================================================================

!===================================================================

EL-TOP 1

! EL_ID PART PROP NODE1 NODE2 ....

NEL 1 1 1 1 2 3

NEL 2 2 2 4 5

!==================================================================

!===================================================================

EL-DOMAIN 1

ELEMENTS = EL-TOP 1

!===================================================================

!###################################################################

!#### LD-BLOCK ####

!###################################################################

!===================================================================

LD-CURVE 1 TYPE=DISCRETE

TIME =0.000 VAL =0.000

TIME =1.000 VAL =1.000

!===================================================================

!===================================================================

LD-COM 1

TYPE=BC-DIRICHLET 1

!===================================================================
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Nomenclature

Greek letters

α index, where α = {1, 2}

β index, where β = {1, 2}

χ index, where χ = {1, 2}

ε strain

γ index, where γ = {1, 2}

ι real number

φi(x) shape function of node i

Π quadratic functional

π ≈ 3.141593

ρ density

σ stress

ξα convective coordinates of master face

Mathematical symbols

Σ sum

∂ operator for partial derivative

∆ directional derivative

δ first variation

R set of real numbers

◦ scalar product

Latin letters

A cross sectional area in the deformed configuration
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Nomenclature

a acceleration

A0 cross sectional area in the initial configuration

āαβ contravariant metric

āαβ covariant metric

āM
α covariant tangent vector of the master face

āMα contravariant tangent vector of the master face

An contact area associated to slave node n

b minimal distance between master and slave surface

c penalty stiffness

x̄M
,α derivative of x̄M with respect to the convective coordinates ξα

E Young’s modulus

f global external force vector

fei element external force vector of element i

g gap function

K global stiffness matrix

KT global tangent stiffness matrix

Kei element stiffness matrix of element i

L length in the initial configuration

l length in the deformed configuration

n line load

N(x) normal force as function of x

n̄M unit normal of the master face

nc number of slave nodes

O linear operator

p global internal force vector

r radius

S trial space
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Nomenclature

∆ūM displacement increments for the projection of the slave node onto the mas-
ter face

∆uS displacement increments for the slave node

r global residual vector

u vector of displacements

u(x) displacement in x-direction as function of x

V volume

W test space

w(x) weighting function

x̄M coordinates of the projection of the slave node onto the master face

xM
i coordinates of node i of the master face

xS coordinates of the salve node

Abbreviations:

BMW Bayerische Motorenwerke

FEM finite element method

FSI fluid-structure interaction

TFSI thermal fluid-structure interaction
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